Transmitters for use in industrial-process control systems –

Part 2:
Methods for inspection and routine testing

Transmetteurs utilisés dans les systèmes de conduite des processus industriels –

Partie 2:
Méthodes pour l'inspection et les essais individuels de série

© IEC 2003 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembe, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale
International Electrotechnical Commission
Международная Электротехническая Комиссия

PRICE CODE M

For price, see current catalogue
CONTENTS

FOREWORD ... 3

INTRODUCTION ... 4

1 Scope and object ... 5

2 Normative references ... 5

3 Terms and definitions .. 6

4 Sampling for test .. 7

5 Performance tests ... 12
 5.1 Test conditions ... 7
 5.2 Preconditioning ... 8
 5.3 Adjustments ... 8
 5.4 Tests under reference conditions ... 8
 5.5 Effects of influence quantities .. 10

6 Test report and documentation ... 12

Figure 1 – Typical measured error plot ... 9

Figure 2 – Two examples of responses to a step input ... 10
INTERNATIONAL ELECTROTECHNICAL COMMISSION

TRANSMITTERS FOR USE IN INDUSTRIAL-PROCESS
CONTROL SYSTEMS –

Part 2: Methods for inspection and routine testing

FOREWORD

1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60770-2 has been prepared by subcommittee 65B: Devices, of IEC technical committee 65: Industrial-process measurement and control.

This second edition cancels and replaces the first edition published in 1989 and constitutes a technical revision.

The text of this standard is based on the following documents:

<table>
<thead>
<tr>
<th>FDIS</th>
<th>Report on voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>65B/468/FDIS</td>
<td>65B/477/RVD</td>
</tr>
</tbody>
</table>

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A bilingual edition may be issued at a later date.

The committee has decided that the contents of this publication will remain unchanged until 2008. At this date, the publication will be

• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.
INTRODUCTION

The methods of inspection and routine testing specified in this standard are intended for use in acceptance tests or after repair to verify the fulfilment of the performance specifications as established by the user. The methods given in this standard are primarily intended for the testing of conventional analogue transmitters. For setting up test procedures for microprocessor-based instruments IEC 62098 should be consulted.
1 Scope and object

This part of IEC 60770 is applicable to transmitters, which have either a standard analogue electric current output signal or a standard pneumatic output signal in accordance with IEC 60381-1 or IEC 60382. The tests detailed herein may be applied to transmitters which have other output signals, provided that due allowance is made for such differences.

For certain types of transmitters, where the sensor is an integral part, other specific IEC or ISO standards may need to be consulted (e.g. for chemical analyzers, flow-meters, etc.)

This standard is intended to provide technical methods for inspection and routine testing of transmitters, for instance, for acceptance tests or after repair. For a full evaluation, IEC 60770-1 shall be used.

Quantitative criteria for acceptable performance should be established by agreement between manufacturer and user.

By agreement the tests need not be carried out by an accredited laboratory.

2 Normative references

At the time of the publication the editions indicated were valid. All normative documents are subject to revision, and parties to agreements based on these normative documents are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

IEC 60381-1:1982, Analogue signals for process control systems – Part 1: Direct current signals

IEC 60382:1991, Analogue pneumatic signal for process control systems

IEC 60410:1973, Sampling plans and procedures for inspection by attributes

3.1 acceptance test
a test to prove to the user that the device complies with the performance specifications as they appear in the contract

3.2 variable
quantity or condition whose value is subject to change and can usually be measured (e.g. temperature, flow rate, speed, signal, etc.)

3.3 signal
physical variable, one or more parameters of which carry information about one or more variables, which the signal represents

3.4 range
region of the values between the lower and upper limits of the quantity under consideration

3.5 span
algebraic difference between the upper and lower limit values of a given range

3.6 test procedure
statement of the tests to be carried out, and the conditions for each test, agreed between the manufacturer, the test laboratory, and the purchaser/user before the evaluation starts

3.7 maximum measured error
largest positive or negative value of error of the upscale or downscale value of each point of measurement

3.8 hysteresis
the greatest difference between the upscale and downscale output readings at one point

3.9 step response
the time response of a transmitter produced by a stepwise variation of one of the input variables

3.10 influence quantity
test parameter chosen to represent one aspect of the environment under which a device may operate.